
3.10 Variable Scope
The scope of a variable is the region of your program source code in which it is defined.
A global variable has global scope; it is defined everywhere in your JavaScript code. On
the other hand, variables declared within a function are defined only within the body
of the function. They are local variables and have local scope. Function parameters also
count as local variables and are defined only within the body of the function.

Within the body of a function, a local variable takes precedence over a global variable
with the same name. If you declare a local variable or function parameter with the same
name as a global variable, you effectively hide the global variable:

var scope = "global"; // Declare a global variable
function checkscope() {
 var scope = "local"; // Declare a local variable with the same name
 return scope; // Return the local value, not the global one
}
checkscope() // => "local"

Although you can get away with not using the var statement when you write code in
the global scope, you must always use var to declare local variables. Consider what
happens if you don’t:

scope = "global"; // Declare a global variable, even without var.
function checkscope2() {
 scope = "local"; // Oops! We just changed the global variable.
 myscope = "local"; // This implicitly declares a new global variable.
 return [scope, myscope]; // Return two values.
}
checkscope2() // => ["local", "local"]: has side effects!
scope // => "local": global variable has changed.
myscope // => "local": global namespace cluttered up.

Function definitions can be nested. Each function has its own local scope, so it is pos-
sible to have several nested layers of local scope. For example:

var scope = "global scope"; // A global variable
function checkscope() {
 var scope = "local scope"; // A local variable
 function nested() {
 var scope = "nested scope"; // A nested scope of local variables
 return scope; // Return the value in scope here
 }
 return nested();
}
checkscope() // => "nested scope"

3.10.1 Function Scope and Hoisting
In some C-like programming languages, each block of code within curly braces has its
own scope, and variables are not visible outside of the block in which they are declared.
This is called block scope, and JavaScript does not have it. Instead, JavaScript uses

3.10 Variable Scope | 53

Core JavaScript

function scope: variables are visible within the function in which they are defined and
within any functions that are nested within that function.

In the following code, the variables i, j, and k are declared in different spots, but all
have the same scope—all three are defined throughout the body of the function:

function test(o) {
 var i = 0; // i is defined throughout function
 if (typeof o == "object") {
 var j = 0; // j is defined everywhere, not just block
 for(var k=0; k < 10; k++) { // k is defined everywhere, not just loop
 console.log(k); // print numbers 0 through 9
 }
 console.log(k); // k is still defined: prints 10
 }
 console.log(j); // j is defined, but may not be initialized
}

JavaScript’s function scope means that all variables declared within a function are visi-
ble throughout the body of the function. Curiously, this means that variables are even
visible before they are declared. This feature of JavaScript is informally known as hoist-
ing: JavaScript code behaves as if all variable declarations in a function (but not any
associated assignments) are “hoisted” to the top of the function. Consider the following
code:

var scope = "global";
function f() {
 console.log(scope); // Prints "undefined", not "global"
 var scope = "local"; // Variable initialized here, but defined everywhere
 console.log(scope); // Prints "local"
}

You might think that the first line of the function would print “global”, because the
var statement declaring the local variable has not yet been executed. Because of the
rules of function scope, however, this is not what happens. The local variable is defined
throughout the body of the function, which means the global variable by the same name
is hidden throughout the function. Although the local variable is defined throughout,
it is not actually initialized until the var statement is executed. Thus, the function above
is equivalent to the following, in which the variable declaration is “hoisted” to the top
and the variable initialization is left where it is:

function f() {
 var scope; // Local variable is declared at the top of the function
 console.log(scope); // It exists here, but still has "undefined" value
 scope = "local"; // Now we initialize it and give it a value
 console.log(scope); // And here it has the value we expect
}

In programming languages with block scope, it is generally good programming practice
to declare variables as close as possible to where they are used and with the narrowest
possible scope. Since JavaScript does not have block scope, some programmers make
a point of declaring all their variables at the top of the function, rather than trying to

54 | Chapter 3: Types, Values, and Variables

declare them closer to the point at which they are used. This technique makes their
source code accurately reflect the true scope of the variables.

3.10.2 Variables As Properties
When you declare a global JavaScript variable, what you are actually doing is defining
a property of the global object (§3.5). If you use var to declare the variable, the property
that is created is nonconfigurable (see §6.7), which means that it cannot be deleted
with the delete operator. We’ve already noted that if you’re not using strict mode and
you assign a value to an undeclared variable, JavaScript automatically creates a global
variable for you. Variables created in this way are regular, configurable properties of
the global object and they can be deleted:

var truevar = 1; // A properly declared global variable, nondeletable.
fakevar = 2; // Creates a deletable property of the global object.
this.fakevar2 = 3; // This does the same thing.
delete truevar // => false: variable not deleted
delete fakevar // => true: variable deleted
delete this.fakevar2 // => true: variable deleted

JavaScript global variables are properties of the global object, and this is mandated by
the ECMAScript specification. There is no such requirement for local variables, but
you can imagine local variables as the properties of an object associated with each
function invocation. The ECMAScript 3 specification referred to this object as the “call
object,” and the ECMAScript 5 specification calls it a “declarative environment record.”
JavaScript allows us to refer to the global object with the this keyword, but it does not
give us any way to refer to the object in which local variables are stored. The precise
nature of these objects that hold local variables is an implementation detail that need
not concern us. The notion that these local variable objects exist, however, is an im-
portant one, and it is developed further in the next section.

3.10.3 The Scope Chain
JavaScript is a lexically scoped language: the scope of a variable can be thought of as
the set of source code lines for which the variable is defined. Global variables are defined
throughout the program. Local variables are defined throughout the function in which
they are declared, and also within any functions nested within that function.

If we think of local variables as properties of some kind of implementation-defined
object, then there is another way to think about variable scope. Every chunk of Java-
Script code (global code or functions) has a scope chain associated with it. This scope
chain is a list or chain of objects that defines the variables that are “in scope” for that
code. When JavaScript needs to look up the value of a variable x (a process called
variable resolution), it starts by looking at the first object in the chain. If that object has
a property named x, the value of that property is used. If the first object does not have
a property named x, JavaScript continues the search with the next object in the chain.
If the second object does not have a property named x, the search moves on to the next

3.10 Variable Scope | 55

Core JavaScript

object, and so on. If x is not a property of any of the objects in the scope chain, then
x is not in scope for that code, and a ReferenceError occurs.

In top-level JavaScript code (i.e., code not contained within any function definitions),
the scope chain consists of a single object, the global object. In a non-nested function,
the scope chain consists of two objects. The first is the object that defines the function’s
parameters and local variables, and the second is the global object. In a nested function,
the scope chain has three or more objects. It is important to understand how this chain
of objects is created. When a function is defined, it stores the scope chain then in effect.
When that function is invoked, it creates a new object to store its local variables, and
adds that new object to the stored scope chain to create a new, longer, chain that
represents the scope for that function invocation. This becomes more interesting for
nested functions because each time the outer function is called, the inner function is
defined again. Since the scope chain differs on each invocation of the outer function,
the inner function will be subtly different each time it is defined—the code of the inner
function will be identical on each invocation of the outer function, but the scope chain
associated with that code will be different.

This notion of a scope chain is helpful for understanding the with statement (§5.7.1)
and is crucial for understanding closures (§8.6).

56 | Chapter 3: Types, Values, and Variables

